Smoothing accelerated algorithm for constrained nonsmooth convex optimization problems
نویسندگان
چکیده
منابع مشابه
Smoothing augmented Lagrangian method for nonsmooth constrained optimization problems
In this paper, we propose a smoothing augmented Lagrangian method for finding a stationary point of a nonsmooth and nonconvex optimization problem. We show that any accumulation point of the iteration sequence generated by the algorithm is a stationary point provided that the penalty parameters are bounded. Furthermore, we show that a weak version of the generalized Mangasarian Fromovitz constr...
متن کاملThe CoMirror algorithm for solving nonsmooth constrained convex problems
We introduce a first-order Mirror-Descent (MD) type algorithm for solving nondifferentiable convex problems having a combination of simple constraint set X (ball, simplex, etc.) and an additional functional constraint. The method is tuned to exploit the structure of X by employing an appropriate non-Euclidean distance-like function. Convergence results and efficiency estimates are derived. The ...
متن کاملExtensions of Firefly Algorithm for Nonsmooth Nonconvex Constrained Optimization Problems
Firefly Algorithm (FA) is a stochastic population-based algorithm based on the flashing patterns and behavior of fireflies. Original FA was created and successfully applied to solve bound constrained optimization problems. In this paper we present extensions of FA for solving nonsmooth nonconvex constrained global optimization problems. To handle the constraints of the problem, feasibility and ...
متن کاملA variable smoothing algorithm for solving convex optimization problems
In this article we propose a method for solving unconstrained optimization problems with convex and Lipschitz continuous objective functions. By making use of the Moreau envelopes of the functions occurring in the objective, we smooth the latter to a convex and differentiable function with Lipschitz continuous gradient by using both variable and constant smoothing parameters. The resulting prob...
متن کاملA bundle-filter method for nonsmooth convex constrained optimization
For solving nonsmooth convex constrained optimization problems, we propose an algorithm which combines the ideas of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm inherits some attractive features from both approaches. On the one hand, it allows effective control of the size of quadratic programming subproblems via the compression a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Mathematica
سال: 2020
ISSN: 1674-7216
DOI: 10.1360/ssm-2020-0181